Object Learning Improves Feature Extraction but Does Not Improve Feature Selection
نویسندگان
چکیده
منابع مشابه
Object Learning Improves Feature Extraction but Does Not Improve Feature Selection
A single glance at your crowded desk is enough to locate your favorite cup. But finding an unfamiliar object requires more effort. This superiority in recognition performance for learned objects has at least two possible sources. For familiar objects observers might: 1) select more informative image locations upon which to fixate their eyes, or 2) extract more information from a given eye fixat...
متن کاملFeature Selection and Non-linear Feature Extraction
Feature extraction and feature selection are two important tasks in pattern recognition. Classiication algorithms like k-nearest neighbors, which are based on the assumption that patterns in the same class are close to each other and those in diierent classes are far apart (locality property), rely heavily on the quality of the features extracted from the input data. In this work, an objective ...
متن کاملA Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection
Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...
متن کاملFeature Selection Extraction and Construction
Feature selection is a process that chooses a subset of features from the original features so that the fea ture space is optimally reduced according to a certain criterion Feature extraction construction is a process through which a set of new features is created They are used either in isolation or in combination All attempt to improve performance such as estimated ac curacy visualization and...
متن کاملFeature extraction for image selection using machine learning
During flights with manned or unmanned aircraft, continuous recording can result in a very high number of images to analyze and evaluate. To simplify image analysis and to minimize data link usage, appropriate images should be suggested for transfer and further analysis. This thesis investigates features used for selection of images worthy of further analysis using machine learning. The selecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2012
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0051325